Current advances in precious metal core–shell catalyst design

نویسندگان

  • Xiaohong Wang
  • Beibei He
  • Zhiyu Hu
  • Zhigang Zeng
  • Sheng Han
چکیده

Precious metal nanoparticles are commonly used as the main active components of various catalysts. Given their high cost, limited quantity, and easy loss of catalytic activity under severe conditions, precious metals should be used in catalysts at low volumes and be protected from damaging environments. Accordingly, reducing the amount of precious metals without compromising their catalytic performance is difficult, particularly under challenging conditions. As multifunctional materials, core-shell nanoparticles are highly important owing to their wide range of applications in chemistry, physics, biology, and environmental areas. Compared with their single-component counterparts and other composites, core-shell nanoparticles offer a new active interface and a potential synergistic effect between the core and shell, making these materials highly attractive in catalytic application. On one hand, when a precious metal is used as the shell material, the catalytic activity can be greatly improved because of the increased surface area and the closed interfacial interaction between the core and the shell. On the other hand, when a precious metal is applied as the core material, the catalytic stability can be remarkably improved because of the protection conferred by the shell material. Therefore, a reasonable design of the core-shell catalyst for target applications must be developed. We summarize the latest advances in the fabrications, properties, and applications of core-shell nanoparticles in this paper. The current research trends of these core-shell catalysts are also highlighted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.

Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been de...

متن کامل

Cobalt Oxide and Cobalt‐Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity

The vital role of ethylenediaminetetraacetic acid on the structure and the oxygen reduction reaction activity of the non-precious-metal-based pyrolyzed catalyst is reported and elaborated. The resultant catalyst can overtake the performance of commercial Pt/C catalyst in an alkaline medium.

متن کامل

Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

Core-shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core-shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) appr...

متن کامل

Photocatalytic degradation of methylene blue from aqueous solution using Fe3O4@SiO2@CeO2 core-shell magnetic nanostructure as an effective catalyst

In the present study, the core-shell magnetic nanostructure of Fe3O4@SiO2@CeO2 was synthesized to investigate its use as an effective photocatalyst for methylene blue removal. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The photocatalytic activity for the Fe3O4@SiO2@CeO2 core-shell magneti...

متن کامل

From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction.

By one-step pyrolysis of a unique "cage-in-cage" cobalt metal-organic framework, nitrogen-doped carbon cubes embedded with numerous metallic Co nanoparticles were obtained. A considerable amount of Co particles was encapsulated in thin carbon shells and formed the core-shell-like Co@C structure. With about 60 wt% Co particles in the prepared sample, the nanocomposites of Co nanoparticles and ni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014